971. Dipyrromethene Complexes of Transition Metals. Part I. Tetrahedral Complexes of Cobalt(II), Nickel(II), Copper(II), and Zinc(II)

By J. E. Fergusson and (Miss) C. A. Ramsay

Abstract

The complexes named in the title have been prepared with two different dipyrromethene ligands. Spectra, magnetic measurements, and X-ray powder photographs have been used to elucidate their stereochemistry.

Complexes of transition metals with the bidentate ligand diethyl $3,3^{\prime}, 5,5^{\prime}$-tetramethyl-dipyrromethene-4, 4^{\prime}-dicarboxylate (I) have been known for some time. ${ }^{1-3}$ These compounds, $\mathrm{M}(\text { Ligand })_{2}$, have been little studied, although their stereochemistry is interesting since the $5,5^{\prime}$-methyl groups prevent the two ligands bonded around the metal atom from achieving a square-planar configuration, especially with the bivalent metals nickel(II)

(I)

(II)
and copper(II). It has been suggested that the cobalt, nickel, and copper complexes are tetrahedral, ${ }^{2,3}$ and also that they are square-planar. ${ }^{4,5}$

We present new evidence, from spectra (Table 1), magnetic measurements (Table 2), and X-ray powder photographs, that the complexes of cobalt(II), nickel(II), and zinc(II) with diethyl $3,3^{\prime}, 5,5^{\prime}$-tetramethyldipyrromethene-4,4'-dicarboxylate (MMPM) (I) and diethyl 5^{\prime}-bromo- $3,4^{\prime}, 5$-trimethyldipyrromethene- $3^{\prime}, 4$-dicarboxylate (MBrPM) (II) are tetrahedral. The copper complexes probably have a distorted tetrahedral arrangement.

The ligand-field bands of the cobalt complexes can be assigned to the transitions ${ }^{4} A_{2} \longrightarrow{ }^{4} T_{1}(\mathrm{~F}),{ }^{4} A_{2} \longrightarrow{ }^{4} T_{1}(P)$ (band-splitting is probably due to spin-orbit coupling), in agreement with other assignments. ${ }^{6}$ Solution and solid-state spectra are the same.

The magnetic moments of 4.3 and $4.53 \mathrm{B.M}$. for $\mathrm{Co}(\mathrm{MMPM})_{2}$ and $\mathrm{Co}(\mathrm{MBrPM})_{2}$, respectively, are in accord with the expected moments for tetrahedral cobalt(ii) complexes ($4 \cdot 2-4 \cdot 7$ B.M.). ${ }^{7}$ The values are lower than for an octahedral field because of less orbital contribution in the tetrahedral case.

Tetrahedral nickel(II) complexes are not common, but there is sufficient evidence ${ }^{8-10}$ to enable us to say that the nickel-dipyrromethene complexes described are tetrahedral (see Tables la and 2). The ligand-field bands (the number, position, and intensity) can be interpreted on the basis of a tetrahedral model. Also, the bands are not shifted by a change of solvent (chloroform, ethanol, pyridine). In addition, $\mathrm{Co}(\mathrm{MBrPM})_{2}$ and $\mathrm{Ni}(\mathrm{MBrPM})_{2}$ are both isomorphous with $\mathrm{Zn}(\mathrm{MBrPM})_{2}$, and $\mathrm{Co}(\mathrm{MMPM})_{2}$ and $\mathrm{Ni}(\mathrm{MMPM})_{2}$ are isomorphous.

The complexes formed with copper(II) are not isomorphous with the cobalt and nickel complexes, but they appear, from their X-ray powder photographs, to be structurally similar to the tetrahedral complexes. The high magnetic moments ($2 \cdot 28$ and $2 \cdot 13$ B.M.) are in agreement with the predicted moment for a tetrahedral copper(iI) complex. ${ }^{11}$ The

[^0]Table 1
(a) Ligand-field bands

* Bands probably similar to Soret band in porphyrins and metal-porphyrins.

Table 2
Magnetic susceptibilities

Com	$\chi_{0} \times 10^{6}$ at 20°	μ (B.M.) at 20°	Expected value for tetrahedral field (20°)
$\mathrm{Co}(\mathrm{MMPM})_{2}$	9.98	$4 \cdot 3$	$4 \cdot 2$ - $4 \cdot 7$
$\mathrm{Co}(\mathrm{MBrPM})_{2}$	$9 \cdot 56$	$4 \cdot 53$	$4 \cdot 2-4 \cdot 7$
$\mathrm{Ni}^{\mathrm{Ni}}$ (MMPM) ${ }^{\text {a }}$	$6 \cdot 14$ 5.67	3-42	3.5-4.2
$\mathrm{Ni}^{\mathrm{Ni}(\mathrm{MBrPM})_{2}}$	$5 \cdot 67$ $2 \cdot 42$	3.55 2.28	3.5-42
${\mathrm{Cu}(\mathrm{MBrPM})_{2}}^{2}$	$2 \cdot 42$ 1.93	$2 \cdot 28$ $2 \cdot 13$	$2 \cdot 0-2 \cdot 2$

reasonably high extinction coefficient of the ligand-field band is in agreement with a tetrahedral stereochemistry. However, the position of the ligand-field bands at 11,700 and $10,300 \mathrm{~cm} .^{-1}$ for the two complexes appears to be too high unless the ligand exerts a very strong field. A similar problem has been discussed for the tetrahedral $\mathrm{CuBr}_{4}{ }^{2-}$ anion. ${ }^{12}$ However, if the dipyrromethene complexes tend to be square-planar this would produce a strain on the ligand but would raise the energy of the ligand-field band. ${ }^{12}$ The spectra of the co-ordinated ligands show considerable splitting of the charge-transfer band, associated with conjugation within the ligand at $20,000-22,000 \mathrm{~cm} .^{-1}$ in the copper complexes. This may be indicative of the strain within the ligand. The spectra of the complexes are unaffected by change of solvent, which indicates that the co-ordination number has not been increased above 4 . It appears from the above evidence that the copper complexes have a distorted tetrahedral configuration and a consequent strain of the ligand which is not so obvious in the other metal complexes.

The intense charge-transfer band of the free and co-ordinated ligands around $20,000-$ $22,000 \mathrm{~cm} .^{-1}$ is probably similar to the Soret band in porphyrins and metal-porphyrins, ${ }^{13}$ which is said to be related to the conjugation or electron-delocalisation within the ligand. The band is shifted to longer wavelengths by electrophilic substituents and also by the co-ordinated metal atom. In the first case the electron-withdrawing group produces an increase in the electron-delocalisation. The effect of the metal will be similar in that the nitrogen atoms will become slightly positive, owing to co-ordination of the metal. This will again increase the electron-delocalisation, with a corresponding shift to longer wavelengths of the related absorption band.

Experimental

Carbon, hydrogen, and nitrogen were determined at the microanalytical laboratory, University of Otago, New Zealand.

Diethyl $3,3^{\prime}, 5,5^{\prime}$-Tetramethyldipyrromethene-4,4'-dicarboxylate (I).-This was prepared according to Mellor and Lockwood ${ }^{3}$ (Found: C, $66 \cdot 1 ; \mathrm{H}, 7 \cdot 1 ; \mathrm{N}, 8.3$. Calc. for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4}$: C, 66.3; H, 6.98 ; N, 8.14%).

Diethyl 5^{\prime}-Bromo-3, $4^{\prime}, 5$-trimethyldipyrromethene- $3^{\prime}, 4$-dicarboxylate (II).-This was prepared according to Corwin and Viohl ${ }^{14}$ (Found: C, $53 \cdot 6 ; \mathrm{H}, 5 \cdot 8$. Calc. for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{BrN}_{2} \mathrm{O}_{4}$: C, $52 \cdot 8$; H, $5 \cdot 14 \%$).

Metal Complexes.-These were made by adding a warm concentrated solution of the ligand in ethanol and a concentrated soution of soldium acetate in water to a hot concentrated solution of the metal chloride in water. Excess of ligand was always employed. The dichroic green or red crystals of $\mathrm{M}(\text { Ligand })_{2}$ were recrystallised from ethanol.

Ligand	Found (\%)					Formula	Required (\%)			
	Metal	C	H	N	M		C	H	N	M
(I)	Co	$60 \cdot 6$	6.5	$8 \cdot 9$	-	$\mathrm{C}_{38} \mathrm{H}_{46} \mathrm{CoN}_{4} \mathrm{O}_{8}$	$61 \cdot 2$	$6 \cdot 2$	$7 \cdot 5$	-
(I)	Ni	$60 \cdot 4$	$6 \cdot 5$	$7 \cdot 2$	$8 \cdot 3$	$\mathrm{C}_{38} \mathrm{H}_{46} \mathrm{~N}_{4} \mathrm{NiO}_{8}$	$61 \cdot 2$	$6 \cdot 2$	$7 \cdot 5$	$7 \cdot 9$
(I)	Cu	$59 \cdot 8$	6.4	$7 \cdot 4$	-	$\mathrm{C}_{38} \mathrm{H}_{48} \mathrm{CuN}_{4} \mathrm{O}_{8}$	$60 \cdot 9$	$6 \cdot 15$	$7 \cdot 5$	-
(II)	Co	$50 \cdot 1$	$5 \cdot 1$	$5 \cdot 5$	-	$\mathrm{C}_{36} \mathrm{H}_{40} \mathrm{Br}_{2} \mathrm{CoN}_{4} \mathrm{O}_{8}$	$49 \cdot 4$	$4 \cdot 6$	$6 \cdot 4$	-
(II)	Ni	$49 \cdot 4$	$4 \cdot 75$	$5 \cdot 75$	-	$\mathrm{C}_{36} \mathrm{H}_{40} \mathrm{Br}_{2} \mathrm{~N}_{4} \mathrm{NiO}_{8}^{4}$	$49 \cdot 2$	$4 \cdot 6$	6.4	-
(II)	Cu	$48 \cdot 7$	4.8	$5 \cdot 7$	-	$\mathrm{C}_{36} \mathrm{H}_{40} \mathrm{Br}_{2} \mathrm{CuN}_{4} \mathrm{O}_{8}$	$49 \cdot 2$	4.55	6.35	-
(II)	Zn	49.55	$5 \cdot 0$	$5 \cdot 7$	-	$\mathrm{C}_{36} \mathrm{H}_{40} \mathrm{Br}_{2} \mathrm{~N}_{4} \mathrm{O}_{8} \mathrm{Zn}$	$49 \cdot 0$	$4 \cdot 55$	6.35	-

Physical Measurements.-Magnetic measurements were carried out at 20° by the Gouy method. Diamagnetic corrections were calculated by use of Pascal constants. Spectra were taken on a Beckman DK2A recording spectrophotometer. The solvents were chloroform, ethanol, and pyridine, and in each case the spectra were the same. The data in Table 1 are those recorded in chloroform.

12 A. G. Karipides and T. S. Piper, Inorg. Chem., 1962, 1, 970.
13 J. E. Falk, " Porphyrins and Metallo-porphyrins," Elsevier, Amsterdam, 1964.
14 A. H. Corwin and P. Viohl, J. Amer. Chem. Soc., 1944, 66, 1137.
X-ray powder photographs were taken with a Phillips Debye-Scherrer camera using $\mathrm{Cu} K_{a}$ radiation. d-Values of the powder lines of certain of the complexes are:
$\mathrm{Co}(\mathrm{MMPM})_{2} 10 \cdot 24 \mathrm{~m}, 8 \cdot 88 \mathrm{~m}, 7 \cdot 46 \mathrm{vw}, 6 \cdot 63 \mathrm{~s}, 6 \cdot 36 \mathrm{w}, 5 \cdot 79 \mathrm{~m}, 5 \cdot 42 \mathrm{~m}, 5 \cdot 26 \mathrm{w}, 4.99 \mathrm{w}, 4 \cdot 30 \mathrm{w}, 4 \cdot 07 \mathrm{w}$, $3 \cdot 77 \mathrm{~m}, 3 \cdot 70 \mathrm{w}, 3 \cdot 56 \mathrm{~s}, 3 \cdot 49 \mathrm{w}, 3 \cdot 36 \mathrm{w}$.
$\mathrm{Cu}(\mathrm{MMPM})_{2} 11 \cdot 29 \mathrm{~s}, 9.00 \mathrm{~s}, 8 \cdot 17 \mathrm{w}, 7.79 \mathrm{w}, 7.34 \mathrm{w}, 6 \cdot 63 \mathrm{~s}, 5 \cdot 80 \mathrm{~m}, 5 \cdot 50 \mathrm{w}, 5 \cdot 24 \mathrm{w}, 5 \cdot 02 \mathrm{w}, 4.67 \mathrm{w}$, $4 \cdot 21 \mathrm{w}, 3 \cdot 73 \mathrm{w}, 3 \cdot 64 \mathrm{w}, 3 \cdot 51 \mathrm{w}$.
$\mathrm{Zn}(\mathrm{MBrPM})_{2} 10.03 \mathrm{~s}, 9.26 \mathrm{w}, 7.52 \mathrm{w}, 6.94 \mathrm{w}, 6.45 \mathrm{~m}, 6.09 \mathrm{~m}, 5.26 \mathrm{~m}-\mathrm{s}, 4.72 \mathrm{~m}-\mathrm{s}, 4.51 \mathrm{~m}-\mathrm{s}$, $3.85 \mathrm{~m}, 3 \cdot 71 \mathrm{~s}, 3 \cdot 20 \mathrm{w}, 3 \cdot 11 \mathrm{w}, 2.81 \mathrm{w}, 2 \cdot 61 \mathrm{w}, 2 \cdot 48 \mathrm{w}$.
$\mathrm{Cu}(\mathrm{MBrPM})_{2} 8 \cdot 09 \mathrm{w}, 7 \cdot 19 \mathrm{~s}, 6.59 \mathrm{w}, 6.09 \mathrm{~m}-\mathrm{s}, 5 \cdot 65 \mathrm{~m}-\mathrm{s}, 5 \cdot 32 \mathrm{w}, 4.99 \mathrm{~m}-\mathrm{s}, 4 \cdot 87 \mathrm{w}, 4.59$ diffusew, $4.43 \mathrm{w}, 3.77 \mathrm{~m}-\mathrm{s}, 3.57 \mathrm{~s}, 3.39 \mathrm{w}, 2.68 \mathrm{w}$.

The authors thank Mr. D. A. Couch for experimental assistance, and acknowledge grants for equipment from the New Zealand Universities Grants Committee.

University of Canterbury, Christchurch, New Zealand. [Received, February 26th, 1965.$]$

[^0]: ${ }^{1}$ H. Fischer and M. Schubert, Ber., 1924, 57, 611.
 ${ }^{2}$ C. R. Porter, J., 1938, 368.
 ${ }^{3}$ D. P. Mellor and W. H. Lockwood, Proc. Roy. Soc. New South Wales, 1940, 74, 141.
 4 B. West, J., 1952, 3115.
 5 D. D. Fly and D. I. Spivey, Trans. Faraday Soc., 1962, 58, 1405.
 ${ }^{6}$ F. A. Cotton, D. M. L. Goodgame, and M. Goodgame, J. Amer. Chem. Soc., 1961, 83, 4690, and refs. therein.

 7 R. H. Holm and F. A. Cotton, J. Chem. Phys., 1960, 32, 1168.
 8 D. M. L. Goodgame, M. Goodgame, and F. A. Cotton, J. Aner. Chem. Soc., 1961, 83, 4161.
 ${ }^{9}$ R. H. Holm and K. Swaminathan, Inorg. Chem., 1963, 2, 181.
 ${ }^{10}$ L. Sacconi, M. Ciampolini, and N. Nardi, J. Amer. Chem. Soc., 1964, 86, 819.
 ${ }^{11}$ B. N. Figgis, Nature, 1958, 182, 1568.

